- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Haney, Jacob (2)
-
Zhu, Xia (2)
-
Zuidema, Shan (2)
-
Hoellein, Timothy J (1)
-
Hoellein, Timothy_J (1)
-
Kazmierczak, Elizabeth_M (1)
-
Lammers, Richard B (1)
-
Lammers, Richard_B (1)
-
Lever, Emily_K (1)
-
Long, Mary (1)
-
Petersen, Fritz (1)
-
Rochman, Chelsea M (1)
-
Rochman, Chelsea_M (1)
-
Schwenk, Bailey A (1)
-
Schwenk, Bailey_A (1)
-
Wollheim, Wilfred M (1)
-
Wollheim, Wilfred_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Urban rivers are hypothesized to be major transporters of plastic pollution into lakes and oceans, with storm events playing a pivotal role. However, few studies investigate microplastic and macroplastic contamination and transport across a river basin, and how it varies with flow. Here, we sampled microplastic (less than 5 mm) and macroplastic (greater than 5 mm) from four sites along an urban river in Ontario, Canada, during baseflow and stormflow. To contextualize their fate and transport through river reaches, we sampled macroplastic stored in the riparian zone, overhanging vegetation, floating in surface water and riverbed and sampled microplastic from the surface water, water column and sediment. At baseflow, most macroplastic was found in the riparian zone (ranging from 0.1 to 4.7 pieces per m2). During stormflow, concentrations (micro and macro) rise and fall with discharge. Moreover, the composition of microplastics in the water column shifts from fibre- to rubber-dominated during higher flows. The mobilization of denser (e.g. rubber) particles during flow is consistent with greater water velocities during storms. Finally, using our data and flow patterns from 2022 to 2023, we estimate that approximately 522 billion microplastic particles and 20 754 macroplastic items, equalling approximately 36 000 and 160 kg by mass, respectively, are transported to Lake Ontario annually. This article is part of the Theo Murphy meeting issue ‘Sedimentology of plastics: state of the art and future directions’.more » « lessFree, publicly-accessible full text available October 23, 2026
-
Schwenk, Bailey_A; Kazmierczak, Elizabeth_M; Petersen, Fritz; Haney, Jacob; Zhu, Xia; Zuidema, Shan; Lever, Emily_K; Lammers, Richard_B; Wollheim, Wilfred_M; Rochman, Chelsea_M; et al (, Water Environment Research)Abstract Plastic litter is a globally pervasive pollutant. Storms are likely key drivers of plastic transport to oceans, but plastic transport during rising and falling limbs of storm hydrographs is rarely measured. Measurements of plastic movement throughout individual storms will improve watershed models of plastic dynamics. We used cameras to quantify macroplastic movement (i.e., particles > 5 mm) in rivers before, during, and after individual storms (N = 18) at 10 sites within three North American watersheds. Most storms showed no difference in macroplastic transport between rising and falling hydrograph limbs or evidence of hysteresis (transport rate range = 0–236 items/30 min). Total macroplastic exported during storm events was positively related to storm magnitude and was greatest at more urban sites. Thus, macroplastic transport during storms was driven by storm size and land use. The quantitative relationships between macroplastic movement and hydrology will improve discharge‐weighted calculations of macroplastic transport which can benefit modeling, monitoring, and mitigation efforts. Practitioner PointsMacroplastic particles (i.e, > 5 mm) are both retained in urban streams (e.g., in debris dams), and move downstream during baseflow and stormflow conditionsStorm flows are key periods of macroplastic transport: transport rates are higher on both rising and falling limbs of storm hydrographs relative to baseflow.The amount of macroplastics moving during storm flows is positively related to storm intensity.The predictive relationships generated between storm flow and macroplastic transport will improve estimates of annual export, and policies for macroplastic pollution reduction.more » « less
An official website of the United States government
